Photoemission and photoionization time delays and rates

نویسندگان

  • L. Gallmann
  • I. Jordan
  • H. J. Wörner
  • L. Castiglioni
  • M. Hengsberger
  • J. Osterwalder
  • C. A. Arrell
  • M. Chergui
  • E. Liberatore
  • U. Rothlisberger
  • U. Keller
چکیده

Ionization and, in particular, ionization through the interaction with light play an important role in fundamental processes in physics, chemistry, and biology. In recent years, we have seen tremendous advances in our ability to measure the dynamics of photo-induced ionization in various systems in the gas, liquid, or solid phase. In this review, we will define the parameters used for quantifying these dynamics. We give a brief overview of some of the most important ionization processes and how to resolve the associated time delays and rates. With regard to time delays, we ask the question: how long does it take to remove an electron from an atom, molecule, or solid? With regard to rates, we ask the question: how many electrons are emitted in a given unit of time? We present state-of-the-art results on ionization and photoemission time delays and rates. Our review starts with the simplest physical systems: the attosecond dynamics of single-photon and tunnel ionization of atoms in the gas phase. We then extend the discussion to molecular gases and ionization of liquid targets. Finally, we present the measurements of ionization delays in femto- and attosecond photoemission from the solid-vacuum interface.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time-resolved photoemission on the attosecond scale: opportunities and challenges.

The interaction of laser pulses of sub-femtosecond duration with matter opened up the opportunity to explore electronic processes on their natural time scale. One central conceptual question posed by the observation of photoemission in real time is whether the ejection of the photoelectron wavepacket occurs instantaneously, or whether the response time to photoabsorption is finite leading to a ...

متن کامل

Probing single-photon ionization on the attosecond time scale.

We study photoionization of argon atoms excited by attosecond pulses using an interferometric measurement technique. We measure the difference in time delays between electrons emitted from the 3s(2) and from the 3p(6) shell, at different excitation energies ranging from 32 to 42 eV. The determination of photoemission time delays requires taking into account the measurement process, involving th...

متن کامل

Wigner time delay and photoemission time delay near threshold

We study time delay in the primary photoemission channel near opening of an additional channel and compare it with the Wigner time delay in elastic scattering of the photoelectron near the corresponding inelastic threshold. The photoemission time delay near threshold is significantly enhanced, to a measurable 40 as, in comparison to the corresponding Wigner time delay. The enhancement is due to...

متن کامل

Time delay in molecular photoionization

Time-delays in the photoionization of molecules are investigated. As compared to atomic ionization, the time-delays expected from molecular ionization present a much richer phenomenon, with a strong spatial dependence due to the anisotropic nature of the molecular scattering potential. We investigate this from a scattering theory perspective, and make use of molecular photoionization calculatio...

متن کامل

Attosecond Time Delay in Photoemission and Electron Scattering near Threshold.

We study the time delay in the primary photoemission channel near the opening of an additional channel and compare it with the Wigner time delay in elastic scattering of the photoelectron near the corresponding inelastic threshold. The photoemission time delay near threshold is significantly enhanced, to a measurable 40 as, in comparison to the corresponding elastic scattering delay. The enhanc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2017